The substantia nigra as a site of synaptic integration of functionally diverse information arising from the ventral pallidum and the globus pallidus in the rat.
نویسندگان
چکیده
Voluntary behaviour in mammals requires the integration of information from different parts of the cerebral cortex, notably the limbic, associative and sensorimotor areas, in a neural network that eventually controls the muscles. One region of the brain that has been proposed to subserve such a function are the basal ganglia which receive inputs from all cortical areas. Although information from different cortical areas passes through the basal ganglia as a series of separate parallel pathways there are several sites where integration of the diverse information could occur. In this study we the identify a neural network at the synaptic level that may underlie a powerful mechanism for the integration, within the basal ganglia, of the diverse types of information arising from the cortex. By double anterograde tracing and immunocytochemistry at both the light and electron microscopic levels, we show that individual neurons in the substantia nigra pars reticulata and dopaminergic neurons in the pars compacta each receive multiple GABAergic synaptic inputs both from neurons in the ventral pallidum (which receive input from limbic areas via the nucleus accumbens) and from neurons in the globus pallidus (which receive input from associative and sensorimotor cortices via the neostriatum). Thus, information subserving functions such as emotion, motivation, cognition and movement converges onto basal ganglia output neurons, leading eventually to the muscles, and also on to the dopaminergic neurons which themselves subserve an integrative role by modulating the flow of information from the cortex through the basal ganglia at the level of the neostriatum and nucleus accumbens.
منابع مشابه
Synaptic integration of functionally diverse pallidal information in the entopeduncular nucleus and subthalamic nucleus in the rat.
To determine the principles of synaptic innervation of neurons in the entopeduncular nucleus and subthalamic nucleus by neurons of functionally distinct regions of the pallidal complex, double anterograde labeling was carried out at both light and electron microscopic levels in the rat. Deposits of the anterograde tracers Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine were pl...
متن کاملParvalbumin-containing neurons in the basal forebrain receive direct input from the substantia nigra-ventral tegmental area.
By means of anterograde tracing of Phaseolus vulgaris-leucoagglutinin (PHA-L) it was determined if parvalbumin-immunoreactive neurons in the basal forebrain receive a direct synaptic input from the A9-A10 dopaminergic nuclei of the substantia nigra and ventral tegmental area. Forebrain sections were processed for immunocytochemical detection of PHA-L and parvalbumin (PV) at light and electron m...
متن کاملExcitatory amino acid binding sites in the basal ganglia of the rat: a quantitative autoradiographic study.
Quantitative receptor autoradiography was used to determine the distribution of excitatory amino acid binding sites in the basal ganglia of rat brain. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid, N-methyl-D-aspartate, kainate, quisqualate-sensitive metabotropic and non-N-methyl-D-aspartate, non-kainate, non-quisqualate glutamate binding sites had their highest density in striatum, ...
متن کاملA study on striatal local electrical potential changes in an animal model of Parkinson's disease
Parkinson’s disease (PD) is a neurodegenerative disorder that does not develop spontaneously in some animal species. PD can be induced experimentally in some laboratory animals including mouse, rat and horse. Globus pallidus (GP) and substantia nigra pars compacta (SNc) are damaged in patients with PD. The hallmark of PD is a progressive impaired control of movement, an alteration of autonomic ...
متن کاملA study on striatal local electrical potential changes in an animal model of Parkinson's disease
Parkinson’s disease (PD) is a neurodegenerative disorder that does not develop spontaneously in some animal species. PD can be induced experimentally in some laboratory animals including mouse, rat and horse. Globus pallidus (GP) and substantia nigra pars compacta (SNc) are damaged in patients with PD. The hallmark of PD is a progressive impaired control of movement, an alteration of autonomic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 75 1 شماره
صفحات -
تاریخ انتشار 1996